Predictive Preloading with Machine Learning
Outline a basic implementation of using machine learning models to predict and preload resources that a user is likely to request next, based on their browsing patterns and history.
async function loadModel() {
// Load the model from the server
const model = await tf.loadLayersModel('/path/to/your/model.json');
return model;
}
This function loads the machine learning model using TensorFlow.js. The model is supposed to predict user actions to preload resources effectively.
function predictNextResource(userData) {
const model = await loadModel();
// Assuming userData is pre-processed and ready for the model
const prediction = model.predict(userData);
return prediction;
}
This function uses the loaded model to predict the next resource the user is likely to request, based on their browsing history or other relevant data.
function preloadResource(resource) {
const link = document.createElement('link');
link.rel = 'prefetch';
link.href = resource;
document.head.appendChild(link);
}
This function creates preload links for the predicted resources, adding them to the page head to start preloading.
async function predictivePreloading(userData) {
const nextResource = await predictNextResource(userData);
// Convert prediction to actual resource URL or path
const resourceURL = convertPredictionToURL(nextResource);
preloadResource(resourceURL);
}
This function connects everything: it predicts the next resource using user data, then it preloads the resource by dynamically inserting a prefetch link to the document head.